MECHANICAL PROPERTIES OF SEA ICE
‘Theoretical phase, July 1982 - April 1983
L. W. Morland

Preamble .

The November 1981 Technlcal Rzport (subsequently deSLgnated

TR) gave a detalled account of the non-linear v1scoelastlc

behaviour of 1ce and the constructlon of dlfferentlal,op’fabor.

relatlons with the mlnlmal‘;ngredlents necessary to descr1be!4 f“3
the ooserved qua11tan1ve response._ It was shown that bl—ax1al
test data’is es ntlal for the conatructlon of a constltutlve
relation to describe the deVlatOPlC (shear) response of an
incompressible material. Until bi-axial data is available,
simelifying assumptions to restrict the tensor structure of the
relation must be made so that‘correlation with uni-axial datae
determines thé remaining response coefficients. During this

phasé we Qave suppoéed.that an appropriate differential relation
is availagle, and have examinéd the formulation of wvarious
prototype boundary-value problems in plane stress and plane
strain, and methods of SOiutlon.

Part I of this Report presents the construction of a small
strain, small rotation approximation of the non--linear
differential relation for a viscoelastic solid; that iéi‘
neglecting strain and rotation compared to unity, but retéining

the essential non-linear character of the response coefficients.

o

Elastic compressibility is include put it is assumed that
elastic dilatation and the instantaneous elastic shear strain

are small compared to typical creep strains of order a few



per cent, which intfoduces_a small parameter ¢ measuring.
bthe relative magnitudes of elastic and creep strains. The
parameter ¢ érises in a normalised dimensionless formulation
bf the constitutive felétion, and must be monitored carefuliy~
in numerlcal approx1matlons of the time-derivative balances.‘
The 1n1t1a1 modulus at constant strain-rate has magnltude féél |

- -_\" ;.

in the normallsed varlables. Plane stress and plane straln;.“””

'equatlons are spelled out togeuner with an 1mpllclt flnlte
system to.a sequencp of plane elasticity problems for a
_material with non~homogeneous?modu11. A set of prototype'.
boundary-value pgrblemé are described. First the impact of
a moving ice'plate with‘a plane rigid wall whicﬁréompresses”
the piatéAduring decelération, to be followed by full or
partial rebound. A generalisation is the indentation of a
smooth continuously curving structure. Next is the situation
when an ice plate frozen to a rlgld inclusion is set in
motlon, to investigate the contact stresses. Finally, é
scheme -to determine the in-plane stresses in a uniformly
stressed regiCﬁ by embedding an elastic disk and measuring
its boundary displacements.

Part II examines the uni-axial stress configuraggon
described by the differential relation and compares it. to
non—linear elastic and linear viscoglastic models which each
exhibit a crucial feature of-the noﬁ—linear viscoelastic
relation; hamely the large initial modulus compared to
subsequent stress-strain ratios. .The uni;axial impact problem

is analysed for'each model. Explicit analytic solutions are



obtained for linear elastic and linear viscoelastic materials,

a soluticen requiring a simple numerical quadrature is given

-for the non- llpear elastic model, but a finite difference

(or other),procedure is required for the non-linear
viscoelastic model. Being much simpler than the
two-dimensional problems, it would serve as a ‘numerical f5

stablllty and’ accuracy test for the plane stress and straln'-

program.
Part IIT derlves llnear v1scoelast1c solutlons for the
embedded rigid dlsk and elastlc disk problems menbloned

above, without calculatlons for explicit models, The Report

i

"closes with some Concluding Remarks hlvbllghtlng the

theoretlcal progress and indicating possible llnes of further

development.
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TECHNICAL INFORMATION RECORD BRC XXX
SMALL DEFORMATION OF A NONLINEAR VISCOELASTIC SOLID
BY

L. W. MORLAND

INTRODUCTION

In many ice plate-structure interactions, the deformation of the
ice, both strain and rotation, will remain relatively small prior to crushing
or at least during an initial phase while peak stresses are reached. Strains
of under one percent are associated with peak stresses in uniaxial stress
configurations and reach only a few percent after considerable relaxation.

The small deformation theory implies small rotation as well, and while small
strain finite rotation applications may also be of interest, the corresponding
approximation does not yield the same degrees of simplificatior™ Assuming
small deformation, current particle position may be identified with its
reference position for the application of field equations and boundary
conditions, and a finite deformation strain tensor may be expressed in terms
of a small strain from the undeformed configuration. However, the significant
nonlinear response of ice even at small strain requires response coefficients
in the adopted differential operator relation which are not constants, but
vary with.égbariants of both the strain and stress. Appropriate quadratic
invariants of strain are required to measure the amount of shear which is

regarded as the physical basis of the nonlinear response.
A first order differential relation,between stress, stress-rate,
strain, and strain-rate is adopted for the 5é%£22E§%¢?§hear) viscoelastijc
response, and an elastic compressibility relation is included. The dé%%é%%ﬁ%f:%zc9
relation is the nonlinear viscoelastic solid model discussed in the November
1981 Technical Report (hereafter abbreviated to TR). This contains the
minimal structure necessary to describe the known qualitative uniaxial stress
response, but the response coefficients and their dependence on stress and

strain must be considerably restricted to be determined by uniaxial data. The

tensor (or directiopal) structure awaits confirmation or modification by two-
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dimensional data, or indirectly by comparison of observation and solution of

boundary value problems. é . s.
The conventional 1li : io of deformagion yields an additive
decomposition into strain and rotation, and the iatien tensor relation

involves the strain and strain-rate tensors, independent of the rotation
tensor. However, inclusion of quadratic terms to measure the shear variation,
and for consistency, the diiation required for a compressibility relation or
incompressibility approximation, involves the square of the rotation. This
will lead to unfamiliar equations more complicated than cgpvegtional systems
ih which rotation is absent. An alternative strain depositon is introduced
with corresponding invariants to yield a system independent of the rotation.
Within the linear approximation of the deformation geometry, both strain
measures are equivalent, but model coefficient dependence on squares of the
strain implies different response with the different measures. It is unlikely
that small strain data could distinguish the two models, and the simpler form
is adopted for application.

The constitutive equations for both plane stress and plane strain
are derived with a view to investigating a series of two—dimensional contact
problems; for examplé, indentation, of an ice—plate by a rigid structure and
movement of a rigid inclusion frozen into a plate (neglecting variations with
depth), and contact with an inclined vertical structure (neglecting horizontal
variation). For the very slow motion envisaged we have the conventional
lizear equil&brium equation (and linear strain-compatibility if required), and
1ine—croveed boundary conditions, but nonlinear differential viscoelastic
constitutive relations. Formulation in terms of dimensionless variables with
normalized stress and strain measures, taking into account the small elastic
strains (strain jumps when stress applied instantaneously) compared to the
creep strains of order one percent, introduces a dimensionless parameter which
will typically take values in the range .0l+.1l. The presence of a small
parameter in one or more coefficients indicates that care must be taken with
numerical schemes, but its influence is explicitly shown in the normalized
system,

An implicit finite difference scheme for the time variation is
introduced, in conjunction with an iteration procedurs{ at each time step to
approximate the significant nonuniformity of the differential relation

coefficients. It is shown that at each step of the iteration, current strain
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components can be related linearly to current "pseudo stress” components
involving the current stresses and “"residuals” constructed from previous
stress and strain values. That is, there are strain-pseudo stress relations
equivalent to linear elastic strain-stress relations, but with nonhomogeneous
coefficients. Furthermore, the pseudo stresses gatisfy the standard linear
equilibrium equations with a nonhomogeneous bo&égggzaetermined from gradients
of the residual stresses. The iteration and time step march therefore becomes .
a sequence of linear elastic equilibrium problems, each one for a material
with (different) nonhomogeneous moduli and under nonhomogeneous body force.
Boundary conditions of traction will involve the residual stresses. Thus, if
the two-dimensional elliptic spafial pfoblem for»éeneral (smooth) non-
homogeneous properties and body force can be solved accurately and quickly by
finite element or finite difference methods, it is expected that the implicit

time marching and iteration scheme will yield stable viscoelastic solutions,

z : VISCOELASTIC SOLID MODEL g E )
Let ¢ dewete the Cauchy stress tensor and g the tatiordL stress

defined by

= — 1 = -—
S=g¢ g(trg)ior Sij o.j ’SUkk‘S" . &)

where the components refer to rectangular Gaesterdan axes Oxi (i = 1,2,3).
If*Fggg,t) is the spatial velocity field, where t denotes time, then the

spatial velocity gradient has a symmetric-skew decomposition

avi _ 1 bvi . an + l E’Ni _ an (2)
ox. 2 \ox, ' ©ox, 2\0ox, ox
J J i J i
or L,,=D,,+W, . , (3)

ij ij ij

where D is the rate of strain and Wy is the rate of rotation relative to the
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current configuratZ;Zz .0,,8, and E are frame indifferent tensors, and a
frame indifferent dewiatsen stress-rate is given by

sD2 § + 5D +W) + (D - Ws (4)
~ ~ ~ ~ ~ ~’ o * ————

where o D er :
k-swﬂdenotes material time derivative. If X denotes particle

position in the reference configuration, then the deformation gradient

tensor F is defined by

F,. = oo , (5)
and the frame indifferent left Cauchy-6rees-tensor is given by

B=EE . (6)

It has been shown that a differential viscoelastic relation adequate
to describe the known qualitative nonmonotonic strain-rate response at
constant uniaxial stress and nonmonotonic stress response at constanﬂk@train-
rate must contain stress and stress-rate and strain and strain-rate at
least. The tensor (or directional) structure cannot be determined by uni-
axial data, nor can the dependence of the response coefficients on the stress
and deformation invariants (assuming isotropy in the reference configuration),
or on rate invariants., We therefore adopt for the present 2 reduced f9rm .of .

the shear relation (6.12) in TR, presented in the alternatlve nonsea%mzatxcn—
leading to the uniaxial relation (5.5) in TR:

s- 2 (ers™®) 1+0s =0 2-%Urml}+“k‘%(”5§£l'

e
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The incompressibility assumption of TR is not made, so t®e- D # 0, and =
Qenior
dependence on the D® is eliminated to obtain elastic jump relation§as a &

smooth limit (see TR, page 42). Eliminating possible dependence on the

2

tensor B” has no similar justification, but could not be distinguished by uni-

axial data. The response coefficients ¢, ¢, and w can depend on stress and

deformation invariants, and on their rates, but for determination by uniaxial

response only one stress and one deformation invariant cagébe igc%uded. We
assume these should be measures of shear, so choose the i-atd stress

invariant
=% (tl‘ §2) > (8)
but consider both principal deformation invariants

- =1 2 _ 2
K, = trB, K, = 5 E(l trgj . (9)

to investigate the small deformation approximation and choose an appropriate

measure. The third principal invariant
K, =det B={p /p 2 (10)
3 ~ o)

measures the dilatation through the density change P, > P-

The introduction of elastic compressibility

-—p=lrg=x(l/Z-1) , (11)

re
“J” whey k is a constant bulk modulus, anticipating the small elastic strain

assumption, will modify the details of the correlation of uniaxial stress data
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with the response coefficients ¢, ¢, w, described in TR (this set is denoted
by ¢*,¢*, w*). That correlation still determines magnitudes of the
coefficients useful for our later normalization. The jump or elastic relation

TR (4.21) with the correlation TR (5.15) shows that ¢ = O (G,) where G, is an

— elastic shear modulug’so that if oo is a stress magnitude, then (cb/Go)<< 1 is
an elastic strain. We suppose also that k = 0 (G,), and 1s known. It has
been shown that each of the terms of (72 %s necessary for the uniaxial stress
iesponse at stress and cemewest strain-rate. If e is the axial
strain, and the strain and étrain-rate terms make similar contributions at

stress o = co, then TR (5.5) implies ¢°6 =0 (G&E) =0 (we). It is =
conjectured t the strain at minimum strain-rate, e, Say, is of order one
fou hbj percents independent of that ¢ = 0 /(Ge ) <K< 1. If t_ 1
3 | ’ P oo,.so e = o,/(G e, . m 18 the
time to minimum strain~rate, then e ~ eo/tm and so ¢ = 0O (I/Etm) and <<<<—-
w=20 (Go/tm)’ Similarly, if ty is the time to peak stress S, at contrast
strain-rate, where the strain is also conjﬁggured to be e,» TR (5.5)

implies ¢ = 0 (1/ety) and w = 0 (Go/ta%hthAt th = 0 (ty). Here €, tp, and ty e—

depend on the stress level Gy As O, increases, the times ty and ty decrease,

é.._.

o< but € increases, and € m;ﬁ#obtm will likely decrease due to the significant
AN

nonlinear dependency of t, on 6, - Thus a maximum magnitude of ¢ should be

attained when o, denotes a maximum stress level in the application, and
similarly for w.
Hence, choose . to be a maximum stress level and define

dimensionless coefficients by
k=6XK, ¢=0C2, ¢=¥(et), w=6alt, (12)

where
€ = co/(Goeo) «1, (13)

and K, &, ¥, Q, have magnitude of order unity or less. The natural time scale

of the viscoelastic response is t  (associated with the maximum stress

level S, ), so a dimensionless time T defined by



BRC XXX

Z?; tmT (14)

or
is order unity when significant viscoelastic creeg‘}elaxation has occurred.

Complete determination of ¢, ¢, w, by uni-axial stress response
requires dependence of ¢ and w on one strain invariant, dependence of ¢ on one
strain and one stress invariant, and the response to full unloading from each
stress level o, provided that the response is compatible with this reduced
model. For the subsequent analysis and numerical scheme we supposa
that ¢, ¢, and w depend on one shear invariant of stress and one shear
invariant of strain, but dependence on further stress and strain invariants
can easily be included. " Dependence on rate invariants will affect the

numerical scheme required for the time steps.

SMALL DEFORMATION APPROXIMATION
Let u (X, t) denote displacement, then

(15)

and

T (16)

or F=1l+e+uw , (17)

is an exact additive decomposition. Small deformation implies

ou
i
?)Yj— K1l:-felf<< 1 and flufi<« 1 , (18) &—
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then

when e and W measure strain (stretching and shear) and rotation respectively
from the reference configuration. Let €,(<<1) denote a magnitude of e or w,

u (X,t) = u(x,t) +0 (e |x-x]) , (19)

where u on,t) represents a rigid body displacement which can be eliminated by
choice of coordinate origin. If the maximum body é%%%%ﬁfis L, then

|x/L - %/L] = |u/L|< OCe)) << 1 ,

(20)
so that on the length scale L:

x=X (21)

That is, we identify reference and current-particle positions for application
of field equations and boundary conditions, making the approximations

0 =0 (22)
ij ¢ 6Xj t
so that from (2), (3),
D=g, W-0 , (23)

<

and the equilibrium equations in the absence of body force become
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boi

——J-ax =0 . (24)
3

For a long aspect ratio body with width £ <K L, the approximation (21) is
required on the length scale & which implies a much stronger restriction on u

than (20). Small strain with finite rotation may be necessary for such

bodies; for example, bending of th&nplates. Now ]['s([ =0 uS\[/t , “SD“
0({ [e /t ) "SWU iH\e /t: ), and hence the linear approximation of (6)/&5 e
(_ ¢ ZIZ’ (D_
s't/=5, sa s'=0 . (25)
To exhibit a shear influence in the invariants (9) of (B), it is
necessary to retain the quadratic terms in the expansion (6):
Bel+2e+el-entue -y, (26)
where to second order in e, >
K1 =3+ 2 tre + tr'ei2 - trgz . (27)
K, = 3+ 4 tre + 2 (trs)z -2 trg2 R (28)
1/2 - 2 _1 2 _1 2
K3 = det F =1+ tre +-2- (tre) 5 tre 7 trw . (29)
To first order in e , the tdilatation is measured by tre, and both K; and Kp
& ——
depend only on tre. Retyfning second order terms necessarily involves trgz _

in K;, Ky and Kj- HPure shear measure is obtained through the tensor &




W
]
-
[
W -
=
[
U=
[}
3]
A
i
W}
)
(2]
[¢]
&./
+
Ho >
™
|
W
.
~
[1)]
=
\/

(30)

which vanishes in pure dilatation. Since §3 is O(e°3), the only second order

shear measure is the quadratic approximation

9"‘

”2 4 [:'- trée (tre }:} 31)

with invariant
¥ =-% trE = tre - —-(tre)z s (32)

which is independent of w. However, an incompressibility approximation K3 =
to second order would involve trwz .

Alternatively, we can define a first order strain measure by

(33)

1]
"
N
~~
ble:]
|
t]
) g
-

which is equivalent to the definitions (16) to first order. Now

q((«

Z 3 +gtre, ~ = 2( - tr >< (34)
afe

2 and K jé’given exactly by (31) and (32), while to second order

and E
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K31/2= 1 + tre +-% (trg)z :Vé:g? . (35)

so B, ‘g', and'l)(ﬁ are independent of y. Recall that p/k = 0 (co/Go) =0 (geo)

2 2

and €“ < 0.0l is expected, so that g“¢ e . Hence (11) and (35) imply that

3

tre = 0 (e eo) and (trg]z < e, » so to 0 (eoz),

XK= trgz, K31/2 =1+ trg.:»{;;% . (36)

The arguments of ¢, ¢, and w will be J, defined by (8), and K, defined by (30)
which is as{g:ggias the approximation (36)1;.b°th require that trsz

is calculated in addition to t in tensor e. If incompressibility is
prescribed, so k » «, then tré&jzgggg:io second order. The quadratic )(
expansion (36)2 is retained initially to examine the compressibility

contributions in comparison with the shear terms, so (11) becomes

1

po—

==
-p = k (tre - trg?) . a3n

-

while the dewiation relation (7) to first order in eg is

. e _1. 1
g+pL+¢ [g+plE)= ole - 3 trel} + 20le -3 trel | . (38)

To complete the normalization (12)-(14), define dimensionless stress

and strain by

g=oz%, p=opF e=ek . (39)

Now (37) and (38) become



A

d d
E—T(§+P~)+‘Z(Z+Pl)=¢>—f E 3trED
/
+20(E -y eeEL] . (41)

Since trE = 0(e) and tr§2= 0(1), the terms in (40) are respectively order
unity and order ¢=_-0/s.;7 Fhus, elig%nating P in (41) gives terms of order ¢

and order gQAfrom e@j/dT, but terms of order unity and eo/e from vp,

and with e /e the term trg2 must be retained. Alternatively, leaving P as
- l/3~£e-u, the same magnitude as Z, and eliminating trE in (41) by

Jor

tr§=-§—P-+‘% trgz, P=——1§tr§ s (42)

2

allows eotrE to be neglected in comparison with E, and the first order

viscoelastic constitutive relation becomes

z—:(l——

dz dp 2eQ :
e g7 t -5T~+wz+(-—— Pl <I>-—-+2§2E . (43)

The term 2eQ/3K is retained in comparison with V¥ since £ > e,arises. In the ;x<

normalized variables the elastic jump relations give

[E] ~ elzZ] . (44)
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PLANE STRESS AND PLANE STRAIN

First consider plane stress in which

Z..=ZL = : =0, trl = 211 + 222, E32 = E31 =0 . (45)

Let the superposed + denote differentiation with respect to T, and define

- 20 - 4eQ
9—1""-3—, 04 ‘I"l‘—g—f(- . ‘ (46)

Now (43) gives a relation for Ej,, not required in the plane field equation,
ree
together with these independent relations for Ejj, E;j, and Ep,, most

conveniently expressed as

O+ 2QE.. = eb. . +Up

12 12 12 122 (47)

@ (Ell - izz) + 20 (Ell - EZZ) =€ (211 - 222) + ¥ (211 - 222) ’ (48)

1

o (B, +2),) +20 (5, +E,,) =1e0 (8, +5, ) +1a (5 +2,,) . 9

22)

The corresponding isotropic elastic relations are

_E — - -
E;p =95 2120 Byp — By = gg (B - Zp),

(50)
_ e(K+4/3G)
E)p + By = ——gre— (E11* Z35)
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when the elastic shear modulus is p = GOG, which follow from (47)-(49) if
Q=¥=0and & = 2G.

In plane strain,

27 " P32 T P31 =0 I3p =y =0, trE=E +E), (5D

and while 233 does not enter the plane field equations, it must be eliminated

from try by applying the constraint E33 = 0. This is most simply achieved by

replacing P in (42) by -KtrE/e, since only the first term in (40) was included

in the derivation of (43) from (41). Hence (47) and (48) still apply, and
(49) is replaced by

28

€
B (ﬁ11+ Ezz) +*B§t(E11 + Ezz) =€ (211+ z:22) + ¥ (211+ 222) s (52)

where

s=21<+.§q>, ‘y=K\1’+-§sQ . (53)

Recall that E11 + E22 = trE = 0(e), so the L.H.S. of (56) is order unity; in

the plane stress relation (48), E,; + E,, is order unity. The corresponding
elastic relation is

- € N
E;, +Ey, = TRFT753) ():n+ "22) . (54)

In both plane stress and plane strain, equilibrium in the ébsence of
body force implies

Jp“‘.(—
oL oz or or
11 12 _ 12 22 _ |
3 tex " O\sx—Ftsx— =0 > (55)
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and strain compatibility with a continuous displacement field requires

32E 32E 22

11 22 12

7 vt —5 = 25y (56)
oX, ox,% 19%,

which are identical to the corresponding equations for linear elasticity.
It remains to construct the invariants J and X in normalized
variables for both plane stress and plane strain. Common expes+emees for the

stress and strain are

211 Ip2 Y Ej; Epp Y
= v =
x 212 5% 0 » B Eip Eoy Y s (57)
0 0trf-3 -3, 0 0 tx¥-E -E,
E
7~

where in plane stress trg = I + Zzﬁ‘and in plane strain trE = E,, + E

11 11 7 ®22,
Hence z
(04
iP
J="'2-tr E"‘?tr
- 2 2 2 _ 1 2
=Tyt I Iy Y ITy, - ug (T 5y,) +5 ()7, (58)
- 1 1 2
I = i-tr g -3 tr
I R _ 1 2
=Ep B+ By BBy - tE (Ell + Ezz) +3 (erE)° (59)

where i is a normalization of %-E given by the full expression (32). The

dimensionless coefficients &, ¥, @, will be given as functions of J and I.
By (40)
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trE = e trE2 + £_ tr (60)
~ o ~ "3K TR
€ <
s0 (tr%}é; o(e), (trE)Z = o(e?) XX, as noted earlier. ><:

Thus, in plane stress, the lead order approximations are

s 2.1 2
J=z S+ () +z- 211 Zp2) s (61)

1=e2+e2+£2+

E
12+ Bj] T Epp + BBy — g (B + 5p)) (B + Eyy) L (62)

where the order e term has been retained in I. In plane strain,

1=5)+ '3(12+E EiEy) 63 <&

and 3 is given by (58) with

- 3K ( 2
trg = = [Eu E11 +E5 + 2E12)] . (64) )<

e,

IMPLICIT FINITE DIFFERENCE SCHEME FOR TIME STEPS

Time derivatives occur only in the constit?tive relations (47),
(48), and (49) or (52), and not in the equilibrium nor compatibility equations
(55) and (56). An implicit point difference scheme for the time steps is
generally more stable than an explicit scheme, and schemes with general
‘weighting between time T, and time Tr+1 (r=1,2,3,...) are presented for the
plane stress system (47)-(49), and the plane strain system (47), (48), (52).

Let a subscript r.denote quantities evaluated at time Tr and use the @@tation

wo=w (3, 1) (65)
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for all nonconstant coefficients, where Jr’ Ir denote the stress and strain

{zzféents evaluated at time Tpe Define

W, = (1 - &) Wr + Awr+1, 0<A<1, (66)

as a weighted average of W between time Tr and time Tp4i.

An explicit scheme is given by A = O, when coefficients and spatial
derivatives are all evaluated at time W[, but are commonly unstable unless the
time increments are extremely small compared to spa?ial increments.

Let & be the time increment Tp4) — T,- Different increments § may
be chosen at different times Tps which could be advantageous for the different
time scales of variation which can arise. Using a forward time differencé and
a weighted average defined by (6Y), the relations (47) to (49) are approxi-
mated by

£
B.1(5 1) 01 - (E1p)d + zaﬁr(i‘l';)%

?

219 )rt1” (212)1‘} + 8%, (T35),

K

67 X €<

2 L)) = Bppdeyy — (B - By Bt 268, (Bpp - Ezz)%’ N

=e [()) = Ty - Gy - 20 % RO =), , (68)
B [(E)) + Epp) gy = (Bpy + By B+ 260 (B FE,),

1 - ] = e
=30 [(2); +25,) 0y - (B # zzer;f]’”? sa (T ¥ I5), » (69)

T 11

and the plane strain relation (52) is approximated by
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B L(E)) + Epp) g (By) +E

267r
(E, + EzzjrE

= e L2y + 30y - (5y) + 2p) 4 H(OTTFT,) - G0

.

Now a weighted average of W involves both Wy and Wyi;- The scheme starts with

known initial conditions - all variables Wo - and proceeds in steps,

calculating each Wyy] given that each W, has been determined in the previous

step. It is therefore neceésary to iterate within each step by taking

B aw, 8 Lo w®, =Bz, o X

for all the coeficients ﬁr in (67)-(70), but not for the stress and strain
components. Using (71) for coefficients, so they are prescribed at the start

fee
of each iteration, means that (67), (68), (69), and (70) are thé%e linear

relations connecting (Ej;).4y, (E9p)pi]s (Ej2)r+]»> and (211)r+1’

(Zy5) 412 (Z12)p41» Which involve the known (Eij)r and (Z; ) . The iteration
in continued until some solution norm or parameter measurlng a significant

feature changes by leg than a specified tolerance.
The éggég%iZ§_£élations (67) and (68) have a common form
(EIZ)r+1 = Jr[(zlz)r+1 + Ar(Elz)r - Br(zlz)r%] ’ (72)

(Byy = Eppdpgr = LBy — 2pp)pyy + AL(B)) - Bpp) - B3, - Zzz)r“]» (73)
where

s . e + 6KYr i @r - 26(1—7\)9r = £ - 6(1-K)Wr i
T E+2eM T e + 6NF_ T+ Y

TV B
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The relations (69) and (70) have the form

D (z, +2,,).]1, (75

() + Eyp)pyy = % [(z); + 2yp)rt1 + Co(Ey + Epp), -

where for plane stress (6¢),

A
3 —
H3{eB + 80T ) 3[8 - 26(1 -A)T_] ed_- 6(1-\)a
-_ - r T = T r
Xz = s Cpm————= » D= —— — , (76)
@ 26AQ eQ_+ S\a €0 _+ Sia
r r r . r r
and for plane strain (70),
. _o* AT : - B~ lesC1- x)y;ye s -
r -— n b} X r—' o *
Br+(_26>\yl)/s e + 6AY_ e+ 6\F_

Define

E? ( u*’E&z§ [) <EZI7L:{Z;)

s = e{E—+ )
T 11 22’r r\ 11 zzvr”
Q = A (B} = Byl — B.(2); - 2,), (78)

- -~

T-
(Rp) = B.(E,), - B.(5,), (79)
(zlJ r+1 (zij)r+1 + (le )I" ij, = 1,2 ) (80)
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where Rij and Eij are conveniently termed residual and pseudo stresses

respectively. Now (72), (73), and (75) can be simply written

(Er2)enr™ (o) (Bpm Bopdiny= 305007 Z0) g

(Bt Eppdy = %20+ 250) 0 (81)

1= = yr= 1= _ = y(a
(Biden =2 Ot xJCE ) -3 G ) Cg0) g (82)
1 (=, = Y 1 R
(EZZ)r+1 -7 (Jr+ Xr)fﬁ;“*“*rl(zzz)r+; Z (jr xr)(zll)r+1’ (83)
(B1o)prr = T:(210) iy (84)

at time ty4j. The compatibility 22%22;23A§56) holds at each time T,4; and the
equilibrium equation (55) can be &% +emeed in terms of the pseudo stresses

at each time Tyy4; as

83(%,,) (%) a(Z,.) 3(%,,)
11/r+l 12/r+] _ 12/r+1 22/r+1 -
B%, + 5%, + b= 0, 3%, + %, +b,=0 , (85)

where the pseudo body force components bj and b, are defined by

b. = a(Rll)r a(Rlz)r: b = - a(Rlz)r _ b(RZZ)r
1 oX, - 8%, ' 2 oX, X,

(86)
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given by the solution at time Tp and values at the preceding iteration.

The system (82)-(85) with (56) is simply a plane linear isotropic
elastic system with nonhomogeneous body force (bj, by), and monhomogeneous
moduli, since jr’ ir’ (Rij)r’ at each iteration within the time

step Tr + T depend on the nonuniform stress and strain fields just

determined.r+éraction boundary conditions can be expressed in terms of the
pseudo stresses. A complete spatial problem must be solved at each
iteration. Note that if stress jumps are applied initially, the initial
solution corresponding to r = O is the solution at T = O+ determined by the
elastic jump relations. The choice of & at each step depends on variations

occurring on the T scale; that is, on the real time scale t;.

FEATURES OF THE TIME VARIATION

The typical response is described by the shear relations (47) and
(48) which, deleting the component subscripts, have the form

OF + 20 = £F + VI, (87) K

where the time unit is t and € is a small piéﬁﬁf er. If Z(T) is prescribed,

with order unity variation on the tp scale, the (37) determines a response

E(T) with %(T) order unity (assuming that the coefficients &, Q, and ¥ are >x<\
smooth). However, if E(T) is, prescribed with strain-rate ﬁ(T) order unity, ><

L ]
for example, E(T) = r = centrast, E
e2(T) enters the balance requires ﬁ

rT, then the time interval on which

0 (1/e); that is, T varies on the time )K:
scale stm. This is precisely the observed constant strain-rate response in
which initially §/& G, or $/E = 1/e. For illustration, consider the linear )L
20 = V¥ = 1 where (87) defines a standard linear solid.

viscoelastic éﬁéﬁzé
Then, for

(T) = H(T), E(O+) =€ , (88)

brrded

there is a smooth branded response on the time scale t,:

TS0 E(T) = 1 - (l-e)e”T, E(T) = (1-ede™ T . (89) x
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Alternatively, for
[ ]
E(T) = H(T), (04 = O, 00 Y
the stress response is
T>0: 2(T) =T+ (1-¢)(1 - e‘T/":) , (91)

which exhibits rapid variation oxgg-an initial time period T = & (t = etm).
We can assess the finite difference approximation (72), (74) appiiled
r
to th\;g linear viscoelastic solid. Hejge

5 _ 1 =580-)) _ e = 5(1-\)
A= € + 68 ° T € + OA » (92)

)

>
L J

which are constant at each time step unless & is changed, and no iteration

within the time step is required. Now (72) becomes

- - é - € + &) - - &
B~ 1 TT‘B')SEr T+ )ore1 ~ ! z—rsgzr - 0%

When £ =1 4in T > O,

(1-8) =01 , (94)

so E(T) = 0(1) until Er + 1 as éﬁégg?'by (89), and § is chosen to make the

approximation (94) adequate, Alternatively, when E=T in T > O, Er = rd, so

E .y -L. 148 +18-3,

r+l r _
6 - € + OA ! (95)

which is order (1/¢) for E 5 1 until Zr > 1 + rd, assuming & S £, confirmed by

&
&
<
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(91). An adeéuate approximation will therefore require 6<<¢ until e—le-Tls
= 0(1). During computation of a nonlinear problem it would seem necessary to
start with 6<<e, unless boundary conditions clearly impose an order unity I,

1 Eru/é = 0()) as time proceeds. &
Contact problems will include some strain variation prescription, which for

and allow increasing &, subject tol'g

some velocity ranges will imply a rapid stress rise on the time scale T = ¢,
at least initially.
Recall that the magnitude of ¢ depends on the elastic strain
associated with the maximum stress reached compared to a strain magnitude at
peak stress, and may therefore not be too small for high strain-rate, large
peak stress, applications. Effects of significant nonlinearity could also
modify estimates made with the above linear model, and experience with the
nonlinear computation is required to choose an optimdg\stratégy for the finite ‘}\‘

difference scheme.

BOUNDARY-VALUE PROBLEMS

Let X,, Xp be dimensionless coordinates with a length unit &

representing the stress variation length scale in the application; for
example, a plate thickness, or width, or maximum contact span. Define

dimensionless displacement - and velocity < by

UV
- m
1_1=eol'g~,x= =T Y
© (96)
U U &«
so E =._1. ﬁ-{-.a__
ij 2 axi axi
Figure 1 shows vertical sections or horizontal plaﬁ\e respectively &

for some idealized plane strain or plane stress contact-problems, in which
straining in the horizontal plane or vertical plane respectively is

neglected. In each case an ice plate of uniform (dimensionless) thickness or
width 2, with stress fézgi/aorizontal surfaces or lateral gdges and rear edge,
impacts with a wall with initial (dimensionless) velocity‘x& in the negative

X3 direction, then decelerates as the contact force increases. Relative to
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non-Newtonian axes fixed with respect to the midpoint of the rear edge, the

equilibrium equations are

3z )%
11 12 o, 12 22 -
— + V=0, -o—+os—=0 , (97)
axl 0%, o, t:-z 3 oX,

where p 1s the ice density, and the wall moves with velocity V(T) into the ice
plate. The dimensionless contact force per unit horizoatal or vertical span
(force/cox) is

2 L .
. 2p2°Le  * 20071 V (98)
=-—_..._2.___ - = }
c t X eGotr’\— :
om :
o tz
so the body force in (97); is -F/2L. Note that X = EEI'Q% will be order unity

or less if £~ 10m, &, £ 2s, 5, ~ 0.01, whe |av/at|<°0.020s72, which are X

common conditions2 and the d&imensien body force (pX/ob) dv/dt ~ 10’4 for

0, = 20 x 10° Nﬁh\’ Idv/dtl = 0.02 ms_z, and decreases as o increases and A\

Idv/dtl decreases. Commonly this body force will be negligible in comparison

with stress gradients§}n the contact area, which may be a useful
(T) is part of the solution. )(
Figure la shows contact with a wall parallel 22 the front edge. Let

simplification since

the friction coefficient be p (constant). The stress boundary conditions

g
v

are

el
]

<L: %,,=0, E,, =0;

2 + 1, ,0 <X 12 29

(99)

o]
I

L, -1 <X, < 1: z =0, 211=0.

The contact conditions are
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Xl =0, -1¢K X2 < 1: 212 = —pzllsgn XZ’
100
U v o (100)

\q(T) = Xx(T')dT',

o]

80 %‘ is independent of Xg» but its variation with T is part of the

solution. Since the rear edge 0 ) is stationary by choice of axes, there

is an auxiliary condition

Ui e ]
\(L,O,T) = 0 or 8(0,0,T) = - A Eu'x o X, (101)
2

which is used in place of (100)p. Values of Ejjs through 2110 Zy9s at time
Tp4p 2D be prescribed by the iteration process (71), andgin &urn the body

force is given by §i’ (0,0,T), using, say, a quadratic

previous times. \AJ g .
Figure 1b an Wutact zone as the ice M into an

inclined wall at angle © to the front edge, but the small strain and small

at - e

rotation approximation can only apply through to complete contact if 8 << 1.
If the ice plate has already taken up the configuration shown in Figure lc,
and starts moving from rest, then the small deformation approximation is valid
for arbitary 6. Further, if the ice is at rest in the partial contact shown
in Figure 1lb, then the small deformation theory can be applied for initial
movement in which the contact zone changes by order of the small strain. A
friction condition on the inclined wall depends on the direction of relative
motion. For 6 = 0, Figure la, the ice slides away from the symmetry line due
to the lateral expansion (suppx;;sed) because of the stress free lateral
surfaces,so the tangential friction changes direction at the symmetry line
(100). This, of course, introduces a stress discontinuity, unfortunate for
numerical calculation — a continuous velocity dependent friction condition
would be more satisfactory for numerical calculation. For example, (100)

could be replaced by

(102)
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where the friction depends linearly on both normal pressure and sliding
velocity, and is continuously zero at the symmetry line. The corresponding
conditién applied on the 1n§i3222 wall avoids the difficulty associated with
not knowing a priori at which point the slip changes direction as 6 increases
from zero. Beyond some value of 6 we would expect the friction to‘act in the

negative X,-direction over the entire contact zone, not just in a zone

adjacent to Xp = 1. The additional contact condition is

ikl 122, \/

“& cos 6 + QQ sin 6 = { cos 6 , (103)

and the noncontact surfaces are again stress free,

Further plane stress problems describing idealized horizontal
deformation configurations are shown in Figures 2, 3, and 4. Figure 2 shows
an ice plate pushing against a rigid structure of arbitary profile of smoothly
varying large radius of curvature; that is, ,g'(xz){<< 1. The coordinates are
fixed relative to the midpoint of the rear zdge so equilibrium is given by

(97) and conditions (101) apply. Stress £om»eé boundary conditions are

X,=+H 0<X <L I,=5,=0, (104)
x1 =L, -HcK x2 < H: 212 = 211 = 0, (105)
=
X, =0, |K|FW(D: 3,=3,=0, aoey X

while the contact conditions, to first order, are

!
X, =0, x| <UD g = d(D) - g(X,)




.27
BRC XXX

if the continuous velocity dependent fﬁézziggségndition is used, where d(T) is
the indeptation depth (dimensionless) petetton to the rear edge; that is,

J(T) = §§i). ~ The length unit & is a semi-span magnitude at maximum contact,
so W(T) < 1, but W(T) is part of the solution, as well as d(T) or eguivalently
F(T). As in the elastic formulation, d(T) can be eliminated from the boundary
conditions by replacing (107) by a stress-type condition

U,

X, =0, [K|MD: g -'(%,) (108)

but here F(T) remains in the body force. The semi-span W(T) is governed by
smooth separation at the end pointfjnormal and shear stress continuously zero

and

X =0, X, =+ W(T):

) + g" (xz)i 0o . (109)

a%g{‘
_&Z—

As in the previous problem, (101)2 with iteration determines d(Tr+1)
and F(T_,y) if W(Tp4)) is prescribed. An initial estimate for W(Tr41) can be
made by extrapolating from previous time steps, with some alternative starting
procedure at T= O. Since thezizggziﬁal solution satisfies equilibrium and
continuous stress gradients (Zeeerd derivatives of displacement) within the
approximation limits, an incorrect W(Tr+1) must be revealed by failure of the
separation condition adjacent to the contact zone. If the W(T,;;) estimate is
too large, it is plausible that the correspondingly “"reduced contact
pressures” for the given deceleration will lead to “reduced displacement”
outside the contact zone, and hence overlap. If the W(Tr+1) estimate is too
small, since the contact pressure is zero at the edge we can conjecture that
the increased contact pressures necessary to balance the given deceleration
lead to a larger negative gradie%iz??zé’the edge, and so again to smaller
stress and displacements just oggsfg;e the contact zone, and hence overlap.

Thus, while (109) will be too sensitive for numerical testing, a criterion for

judging the W(T, ;) estimate is
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i o
Y (0, x,, T, ) +&(%,)) -da(1,,)>0 for |x,1k(T,,,) » (110)

T

applied in some small region adjacent to the contact zone.

In each of the above problems, the rear edge X1 = L could also be
subjected to a driving stress le(L, X9, T) = -P (XZ’T> in place of (99), or
(105),- '

Figure 3 represents a static ice plate in which a rigid structure is
frozen, and then the ice plate is set in motion, for example by water currents
which impose a velocity.xfT) in the X; direction through basal shear
traction. In generalized plane stress we can identify this with a body force,

structure there is equilibrium governed by (97). Here we regard T) as

precisely that shown in (\97);, so with respect to Newtonian axes fixed on the
Y
prescribed.

Consider the circular disc shown in Figure 3 with unit dimensionless
radius, and let the distant plate boundary be circular with radius L for
convenience. In plane polar coordinates (r,86 ), the physical components of
displacement, strain, and stress, satisfy the strain-displacement and

equilibrium equations

llﬂ’ Llef L[A, L[m. [42? &
rr or °’ 06 rd%¢ r°’ ro 2\r 36 or T ?

2
®Ter , 1 %0 Zee” Toe P eovcose=0
or T 06 r s tE N ’
o m
2\ (112)
3% dx 5 wptie V
1708, 718 5 0% 2% sin 0= 0;
r 06 or r Uotm ’

and stress—strain relations aa unchanged apart from the subscript
translation 1 » r, 2 » 6. For numerical purposes it may be more convenient to
keep a retangular plate and use rectangular coordinates. Boundary conditions

are a stress free plate boundary and prescribed displacements on the disc

e

Erme



boundary given by R

LN UV by

r =1: \= N, §2= 0, or &E= - Y cos 8, ﬁe= X sin 6. (113)

Finally, consider an ice plate region in uniform stress
Z.. =5, (114)

into which an elastic inclusion shown as a circular disc in Figure 4, is
carefully embedded and thejice  refrozen onto its edge without disturbing the
far field (L >> 1). The @’é

stressed and deformed. It is supposed that Nl + Np < 0 so that the disc is

stress field is changed, and the elastic disc is

under compression when frozen in at time T = O. If the elastic properties are
given and N;, Ny, S are prescribed, the coupled plate-disc problem with

continuous traction and displacement (bonded interface) is well posed, and the
tractions and displacements at the interface can :be calculated. Supposé that

the common interface displacements can be measured in the disc:

Foom -l
1,0,T) = e,T 1,0,T) = e,T). 115
\e (16,1 = (0,mlag (1,0,m) = o, (115)
Up

Then the elastic disc solution can be determined, giving the tractions on the
interface. 1In bégggb&, coupled with the plate edge tractioms Nj, Nj, S, these
determine the viscoelastic plate solution, and in particular

g&%I,B,T), ué?l,e,T). 1f N;, Ny, S are the correct field values, these ,
interface displacements would match (115). Since the problem of prescribed
displacements and tractions on r = 1 is not a well posed viscoelastic problem,
Ny, Ny, S cannot be determined directly. A sequence of trial Ny, Np, S may

lead to correct interface matching, but alternatively, prescribing

displacement on the plate edge (say zero relative to initial stressed stat )“451/

and displacement or traction on the disc plates interface, may lead to &hgssn

matching with interface tractions or displacements respectively.

Nol-c b’m[- e[alfzbnum I t‘ﬁc non - I\/et.ll‘oman :mec 3{)»’0' bj (77/,
Modtﬁe-f the f/aéval ezaahan (85), at time Ty, &
o) (En)r ? (27.) _)‘
) by TR = e,
7 dXa g:?: U &,.. (\/n, ) (”é}

and J‘IMl/ék adc/'l‘mm will aﬂ!& frar\ the /7()/6r coordinsfes e;uabwu (112),



V(T

P(g\d '

A

;« - L - - -

y ] Slress £ree

7l ’ .

RS ! e .
~

NS .. o _ —_— e

A= A

/Kh !

/ ¥

7 Chress free

/

V(T
va), )
i“\‘(jld N ":,.
Vi)
F\Q\'d

F|g. | P’{L_P.C SU'{:'/&‘ ((/m».[‘,.,f- Con /

> X



>'<-A
e
v
.‘-h
-y
wv
el
o )
w
N
— —_ -_— —— — - - .r..
| o
1
o — gjs
) ! budll
- ! :
A | i
‘ 1]
iy 21
. v &
— ko
K v
- ) —_— - - T T s
>
> .
‘J . - . -
hre \( - == ?_’“7-‘_—3"3'-:?%‘;\%'; -
< A g N =
A > > ™
- /k\./

Fi'cj 2

p{()r‘)Q, S’lp’f(’fs CO?\{(?MI&[IOH {or'
Cmooth V{.ndcnfah'on




Fig. K3

Q!qw‘ (he lucion /j\c).fn nto ‘;’5»‘\-

M‘yv_‘l,ll (5 (.(_ { 'n )\‘- ‘) t ] ’] e .

~



ZF, K-

ZL..

><\V ‘

e —
|

FW~M-

-

AS. L.“

N,

Elastic e lesion
Stressed

grO}Cn Into
ﬂafﬂ.



Part 1
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1. _-Viscoélastic-andAelaStic models

Uni-axial stress relations for the small deformation
. non-linear #isceolastic model are obtained by setting
z12.= Zop = o, E12 = 03' E33 = E22 = EZ’ and 211 =3
E11.= E, in the Part I equatlons (MO) and (45) - (50).

Addlng (48) and (49) glves the uni-axial relatlon

©2eq,

. .;ffz 'éﬁ;ﬁ.‘ -~ a
o | |
From (40),
- . EZ .
E + 2E, - eO(E2 + ZEE) = 3R s _ (2)

which has the so6lution

o)
it
!
-
t3
+
lm
™

(3)

o
=

when e, is neglected in comparison with unity. - The stress -

v

and strain invariants (58) and (59) become v

-

5.2 3 _ L. o vo _ 3., €IE , e2%?
J =317 I=3(E-E)°® =3E 6k T 108K ° _ (4)

If we define a Poisson's ratio

o - i _ €ZX :
VE T E® T3 T ERE ! (5)



~ then since E is not constant at constant stress r ,

I is not linear in time at constant strain-rate g ,

11

and

then v varies with time in both these tests, even though

compression is elastic, independent of time.

Unloading from any state to zero stress gives an

instantaneous elastic strain change followed by relaxation —

E=-‘T ,=-_f(E)
since § and ¢ are eval&ated at =0 ; that is,

at J =0, I= gE2 . If a model is assumed in which the

”~

ratio Q/6 - depends only on I , independent of 3 » then -

the unloadiﬁg data function f(E) determines 0/

completely. Now, if E = F(%,E) is the measured response

at constant stress I , then by (1) and the definition
(6) of ' £(E) ,. |
2Y o

F(5,B) = 21 + ?9-%

f (E)
E

- £(E) .

e
N

If,further, the response at constant strain-rate SR

determines the modulus

ar _ 1
a*E—*—’EY(Z,E) '

e
It
€

and the strain response E(gz,w) allows an inversion of

"w = W(Z,E), then (1) leads to the relation

(D

(8)



iy =00 -5, | -9

which determines ¢ . Hence (7) determines ¥ ang & )

is given by (6). The normalisation supposes % , Q, ¥ are

order unlty functlons, and the deflnltlon (8) of order unlty o
. l 'é— e

Y takes 1nto account the lnltlal modulus magnltudeﬂ
By equatlon (48) of Part I, s—l is pre01sely the 1n1tlal
shear modulus in the normalised varlables, equ1valent to aﬁ»
instantaneous elastic stress Jjump - strain jump ratlo.

' s
An elastic relation is obtained from (1) by setting

=% =0 and " ¢'= 9(J) = ¢(3z2) , then

. 2 1 5
E = (§6 + §R)ez . (10)
Define
L . 2 : . . .
so (10) becomes a strain-stress relation : -
E= x{(£) , x(0) =0 - w(12)

where y'(0) = 0(¢) since -¢(0) ='0(1). A significant
non-linearity and order unity modulus at order unity
normalised stress Z: requires x'(1) = 0(1), and a simple

- model with these features is

X' () = eAll + axr?} , (13)



'.L'.[

-1 -1

A=t =0, a=oY . (14)

The linear elastic case .is simply a = 0‘. .
Effects of non—monotonlc straln rate response at

constant stress, reflected by the prlmary deceleratlng

lcreep, secondary (statlonary) creep, and acceleratlng tentlary
'creep 1llustrated in TR Figs ,1 and 3, can be explored by
using an appropriate linear v1scoelast1c relation. Solution
of boundary value problems can then exploit llnear analysis,
Aand in partlcular correspondence methods a33001ated with
‘linear elastic analyses. Of course, the 51gn1flcant non-linear
dependence of mlnlmum straln rate and time to minimum on the
applled constant stress is lost, and 31m11ar1y that of the
_max1mum stress and time to maximum on an applled constant
strain-rate. In our normallsed varlables the stress unit

0§' is a maximum (shear) stress and the strain unit is the
relatively uniform strain €, («:0.01) arising at the
. maximum stress at constant strain- ~-rate, and at the mlnlmum
strain-rate at constant stress. The linear model shonld aim
to retain these features. An 1sotroplc linear v1scoelastlc

material in which compression is purely elastic has the

€quivalent strain and stress formulations

”~

. T : . o
E(T) = J_S(T) + J J'(T-T')S(T')aT" , | (15)

- 00



- - (T -
5(T) = 2g_E(T) +,J 2g' (T-T')E(T')4AT' , (16)

where

-~ .

S and 'E  are the stress and strain deviators Lo

1
[
1M
|
W
rr

a|
H
-

-

.'m>,
]
t
!
W

r’-

2]
vl
ke

[ ]

K is the eiastic bulk modulys, g(T) is the relaxation

function in shear and J(T) is the creep function in shear,
béth g(T) :and J(T) wvanish in T < O , and 9, = 9(0+),
Jo = J(O+) .  The use of 2g(T) in the relaxation form (16)

allows direct correspondence with a constant elastic shear

modulus g .

In uni-axial stress, (15) and (17) giye

T
E(T) = 203, + g E(T) + 2 J It (e-r' )L (T)art , (19)
) O

- 00

.;?;.p"

which has the same form as the shear relation (15), but
the similar integral expression for ZI(T) in terms of
E(T) involves a composite kernel, not simply g(T)}. Recall

—
that both g _ and ko are Of(e *), and hence Jg

I

O(e),

but an incompressibility approximation sets (1l/k.) = 0.

In the latter case, the creep function is 3g(T).




Retaining compressibiiity, define the creep function in

‘uni-axial stress by

)

Z(T) = g— +

1
(o]

and let Y(T) be the corresponding relaxation

R = 2 I(T) +J 2' (T-T')L(T')AT'
Z(T) = YOE(T)1+I y' (T-T" )E(T')aT’ ' . (22)

-— 0O

l),

are equivalent uni-axial relations, with Y = 0(e”
Zoz O(EZ). | |

" Now the éreep function Z(T) 1is the normalised strain
response to unit stress I ~jn T > 0 ; that is, to a
_constant stress O which reflects the maximum stress of -

‘concern. _ The corresponding strain-rate response 1s

> = H(T) : BTy = 2' (T) ' - (23)

e

which is required to have the forms shown in TR Fiéé 1 and

3 while strain remains small, that is,while E K 0(1).

[}

Thus

z' (0) = R, >0, 2"(T) < 0O 'in O<T<T ,

1l

Z"(Tm) = 0, z'(Tm) R, > O, Z(Tm)'m 2, = o(1) (24}

\%

~gv(t) >0 in T T, * Zr(T) - R, as T = & ,




where the asymptotic limit, representing unbounded strain,
'is included as é convenient model extrapolation beyond the
applicable small stréin range. An alternative extrapolation
ié required ifAthe application involves maintained stress |
fd: times greatly exceeding T, - ’ | j.;
Similérly; by (22), the stress response to unit appliedf

strain-rate E in- T > 0. is

T o

E =!rH(T)':-'Z(T)'= J,Y(T')dT’ = Q(T) , ' f25)
O

§
¥

which reaches a maximum Q(Ty,) = Q, at T = Ty and
E = EM = 0(1) ; that is, at strain e, - Hence the model

requires

0, =0() , T. =o(l) . | | (26)

The required form of  I(T) is shown in TR Fig. 4, implying

Y(T) > O in O < T < TM ’

Y(T,) =0, Y(T) <O in T > Ty «g'(27)

Y(T) > 0=, Q(T) > Q. >0 as T > .



We also have the inequalities

‘and would like

Qp = 0(1) | . | - e

to avoid a dramatic reduction of stress at constant strain-rate

as the maximum stresétis passed.
The most simple creep function exhibiting the finite _
strain-rate as T - e and compatible with the derivative

properties (24) is | !

2 -c,T

Ij;(l-e P IE(T) | (30)

z(T) = 2 {yT + 1 +
. ) o ’ i

1

. . The two exponential terms incorporate two

characteristic creep times cI1 “and 051, and at least two

where -yZo = Re

such terms are necessary for 'Z"(Tm) = 0 at finite Tm 3 -
-c,T -c. T
jpele T M4 gcle PM=0. (31

e

Given Zo and Re’ there are four parameters j1,j2,c1,c2,
which, in principle, may be chosen to fit four other physical

properties; for example, Ro’Rm’Zm’_anq Tmf Thus,

‘RO = ZO(Y. + jlcl + jzcz) ] : (32)
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R = 2,(y + jyc,e + j,c.e ) B (33)
' 5 | —cle' S Th '
Z, = 2 {yT + 1+ 3;(1~e ) + 3,1 -e T )}, (34)

in conjunctiou wiﬁh (31) Equatlons (31) - (34) are a hlghly'f“

v-'

non-linear lmpllCIt system for .31’J2’Cl’02’ whlch ralses

questlons about unlqueness and numerical stablllty andhacuuuacy.
In partlcular, magnltudes of starting values for the solutlon
- may be necessary, and not obvious in view of the small parameter
€ in the model. It is also necessary thathfhe relaxation
function Y(T) determined byhthe creep function Z(T) has ﬁhe
requlred propertles (25) - (29). An analysis of Z(T) and
Y(T) simultaneously (Morland, unpublished work) determines the
restrictions on the:parameters in (30) and associated parameters
in Y(T) , togéther with their magnitudes..

'Inversion of (21) or (22) to determine the HZ(T),F Y(T)
relation - each deﬁermines the other - is conveniently derived
by Laplace ﬁransforms. Let F(s) be the transform of ‘f(T),

where f£(T) vanishes in T < 0 and f, = £(0+), then

sT

Lre1 = T(s) = f £(t)e ST ar , f£(1) = sE(s) - £, - (35)
O .

and the transform of a convolution integral 4is

T
f(S)§(S) = Zi[ £(T-T')g(T")ar* . (36)

o



B e e = N CSE | S LI

Hence (21) and (20) give for Vanishing @ and E in

T <0 :
E(s) = sZ(s)I(s) = Z(s)T(s) ,
-~ T(s) = sY(s)E(s) = Y(s)E(s) ,
so théﬁ_the'traﬁéformed ﬁéteriél funétion;léatisfy_ :“;a‘

—5(5)5(5) =1 or 'sf(sz§(s) = % ,

which, using the results (35) and (36), gives the Volferré

. integral relations

o o
;ZOY(T) + J 2’ (T-1')Y(T')ar’

o
‘ T - ) . -
= YOZ(T) + J Y'{T-T')Z(T')aT' = H(T) . (40}
T o .
In particular, A
zZ.Y, = 1 . . | (41)
For the creep function (30),
, 3, ¢ i,C P, (s} ,
Ly oy 415 272 _ '3
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where Pz(s) and P3(s) are respectively quadratic and cubic

polynomials, with s2? and s?® coefficients respectively

unity. Hence

- 3y 3
s¥(s) =¥(s8) = ¥s 2 5w, ¢ ih1Ys
i
where-.-bi (1 5“1;2,3) are the roots of -

Py(s) = s® + s?(c

+

ey tYHictiydy) * o slejcytyey e,y 3¢ ¢,+5,c,0,)

+ yeyc, =0 . 4

BS S+ o Zgji(s) + 1, hence Y;l?(s) + 1, which implies

the condition (43)2; Inverting (43):

| -b,T |
Y(T) = Y, I y;e ' 4 (45)
. i=1 .
and in turn
3 ' —biT -
(T =Y Z +— (1 - e ) I (46)
O i=1 bl

The required Y(T) and Q(T) properties imply that the roots

—bi must have negative real part, or preferably that the bi
are real and positive. There are no simple explicit conditions
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on j1,j2,ci,c2, which guarantee this or the various other
properties, but starting with the relaxation form (45) and its
propertiés allows more explicit statements about the parameters
¥;sb; (i = 1,2,3) and Jjcy (i = 1,2). Such results, togethep
with an analysis of parameter magnitudes necessary to achleve
thelalgelnltlal modulus in conjunction with order unity

QM’T ZM,Ahave been determlned (Morland, unpubllshed work), .and

allow the constructlon of a varlety of models ccmpatlble w1th».‘,

both constant stress and constant straln rate response  In o
addition, known parameter magnltudes w1ll-1mprove startlng‘naiues
for:the numerical solution of equations like (31) - (34) to

correlate with prescribed featurds.
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2. . Impact of ice plate with rigid wall

Considér the plane stress problem shown in Fig. 1a,.
but with perfect slip on the wall X = X1 = 0 ; there is
then a uni—aiial stress solution compatible with the |
~ momentum 6qﬁations and all boundary conditions. In the
non-NewtoniannaxeSvfixed with respect to the réar edge of;;;i

the plate, the momentum equations (97) of Part I hédﬁcé tb?ﬁ

sr v =0 ,
X 5 2
] om
4
h
where
v
VIT) = 37 |x=0 (48)

is the plate rear edge veloéity in the negative X direction
in thé Newtonian frame fixed with respect to the wall, and
U(X,T)' is’ the particle displacement normal to the wall.

‘Boundary conditions on the rear edge are

X=L::2=0<&E=0, U=0, (49)

‘
..
D

where

— _§__[_J_ ’ .
E=x% - (50)

Stress and displacement are zero until the moment of impact,

T =0, sothat V (0) =0 by (47), recalling that any
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- discontinuity propagation is supposed to be completed on

a shorter time scale, thus

T=0: f=U=V=0, V=V_, (51)

where Vo‘ is the uniform plate veloc1ty before 1mpact

» After 1mpaot the plate compresses and decelerates

untll the rea” edge 1s at rest then may partly or fully B

- *\p‘ P. o

rebound. It is- 1nterest1ng to derlve flrst the 31mple —
R e R
analytlc linear elastic solutlon Whlch 1ntroduces ’

comparlson values of the the and depth of full penetration,
) : : . ¥ ) _

when the plate is brought to rest, and the maximum contact

_pressure and strain which occur at that time. For the

linear elastic material,
I = YE , " (52)

- where. Y is the constant (normalised) Young's modulus. If

the initial modulus Y_ = is used, then Y = oe™ "y, ir

a modulus at T= 1 is used, then Y = 0(71). Eliminating
i  from (47) through (50) and (52) gives

plle

2 C

A ° v , (53)

ax? Yo t2 W
om

and integrating subject to the end conditions (49) shows

that

pRie . _
U=~ —=V(T) (L-X)? , , (54)
2Yo _t*° -
. O m



““le

2
pL eo

; 2
0Otl'ﬂ

V(T) (L~X), <O . (55)

Now (54) and (48) vield

subject to initial conditons (51), and hence

pe
T _ L o . ~
T~)’ Te = 3% ( 2Y0 ) (57)
e m o ,

= n
vV = Vocos(2

where Te is the normalised penetration time required for

"the plate to come to rest. In terms of the uni-axial
wave speed in the material, the actual penetration time
is ' -
Yo .
T 2L o, %

£t =+ T = == , whexre c¢_ = (—) (58)

e me 23/2 Co : e pe,
and EL/cé is the wave travel time down the plate (of

length &L) . Thus t, is approximately equal to the

wave travel time, and is independent of the



ey .I{
%mpact speed v, = eozvo/tm .

The penetration depth is

& =e fU(0,T.) = ®o*Telo _ Zofe _ sr
e = % rrtel T Ty oW 2%

’ (59)

and the‘streés and strain at time t, are

. 4T V o
TO0e = TO,L = 3 B 27pC v,

where Yco/eo. is the physical uni-axial modulus. That is,
the maximum strain magnitude is given by v,/c,-
Alternatively,-equating the elastic strain energy aﬁ time

te with the initial kinetic energy gives

4L
. YGO .
. . o - O ) v . ~..-.
- which implie§
o 5L vy ) -
2 = 2 = [y < e
(") pean = In I e"dx = (ce) )  (63)
, o .

The 'velocity solution (57) shows as expected that V becomes

—VO at time T = 2Te when I and U become zero and

contadt is losti that is, the plate rebounds with velocity

vV .
(o]
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‘ For the non-linear elastic material, (52) is replaced
by (12). Integrating (47) subject to the end condition (49)
again gives the linear stress distribution (55), so that (12)

implies

" and hence

U=-—1 f x(znyaz'
Azv(r)
N o I
¥
where
2
-Az _ pl eO _
o v (66)
Co m

and at X = 0, % = A2V(T)L, = £ (T) say. Thus

' - Z_(T)
_3u(0,T) _ V(T) © vy g
v - B - 2 {| XD - 3, (T, ()]
. : o ’ -
. £ (T)
O
- - VD) I Dyt (IT)ant . (67)
A2V ()

O
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Define
- ):0 -
1(5) = J r'x'(zyaz' , (68)
, o

‘which is determined by the elastic relation (12), théh

(67) 5¢éomes' '

I(z,) Az,

av

+12V -0 _’

>
o
o
=3
o

T =0: V= VO ' Z() =0 . ' o (70)
Thus
z '
2 (yy2 2y o ° Itz v =
by (Vo - V%) = 2 5 dZo = H(ZO) ’ (71)
. . [o) O .

where, since X (3z) is odd in I , positive in I > 0,

I(ZO) and H(Zo)i are positive and even in Zo’ and

‘ 2 2
_I(zo) " ZO ’ - H(Zo) 4t ZO as Zo > 0 . " (72)

Now

5 = ALY = H“ltxz(vg -v®3l <o, (73)



so that

T+ (V 2V z0) (74)

determines V(T) implicitly for O < T < T,
f V(TE) =0, w1th symmetrlc rebound - on TE_{?H-'V

ﬁhen- z is glven by (55) and U by (65)

The llnear elastlc solutlon is recovered by settlng

s | -
. _ -1 | .
X' (I) = 1/¥ , I(I) = H(z)) = 12/2¥, B h(E) = -(2v£;%, (75

when (74) gives T(V=0) = Te as required. For the

rnon-linear model (13),

1
'g'E

- : | J (76)
) = - (¥ o+ 22555 Lyt S

-1
EA

2 N
H(zo) A(4ZO +. aZO) ’

i

where strong non-linearity is described by A = O(T),P

a = 0(ef1). Numerical quadrature is pequiréd to comgiete

the solution.and determine the penetration time T at

V = 0 and the associated depth of.penetration and stress.
| For the lineay viscoelastic material with uni-axial

relation (21) or (22), we use the transformed reiation

(37) or (38) in conjunction with the transforms of

(47) - (50) and initial conditions (51); thus



o , (76)

3T 2 (T _

=% t AT - V)

V = sU(0,s), U(L,s) =0, E(L,s) =0, (77)
- e o B
.t‘—s-s(——E—ZZ . - ) . . (‘7‘8)

'Elimihating ¥ between (76) and (78)_gives the tfansformlt'.

- of (53) with Y .replaced by Y = 1/Z :

i

2%7 o~
37U . _ \27(sV - V) . ' - (79)

9x?

and hence

T=- 302UV -V )L -x° . (80)

Now combininngith (77)1 gives

_ ALV s -
2y + A?L%s? N
so that VvV~ V /s as s > « (§:+ YO), which implies

o
vV - VO as T »+ 0 as required. The linear elastic case is
]

recovered by setting Y = Y , constant Y , when (81) inverts

to (57). For the model (30) leading to the transform (42),



V= —— o 3 , (82)
A%L sP3(s) + 2YOP2(S)

which has the structure and inversion

The rootsvifjai), 1f§2i,...,u‘_gf the denominator of the
expression‘(82) must be determined numericaily once the
model (30) is brescribed, bug a physically éensible

solﬁtion implies that_ Re(ai) > 0 for each roo&, where the
, rodts are real or occur in complex conjugate pairé. The
time T = Tv' when V(T,) =0, V<0 in 0 <T < Ty,
must be de@ermined numerically, aﬁd then "rebound®™ in T > TV’
V<0, investigated to see if contact is lost or if U
remaing positive. The maximum stress n0410nger coincides
with maximum strain, so will not occur at maiimum pehetraﬁion,
A defailéd numerical solution for a model of the fo;m (30)
compatible with the main features of cénstant étress and
constant strain-rate response would provide guidelines to

viscoelastic effects on maximum compression and stre¥s for

different impact velocities.
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Part IIX

Linear viscoelastic plane stress problems

Contents

1. Effects of 1ce plate movement on fixed embedded dlsk ,';?

2. Correlatlon ofvfar—fleld ice p;ate stresses w1th




1. Effects of ice plate movement on fixed embedded disk

Consider the plane stress situation illustrated in
 Fig. 3 where a rigid disk is frozen into an ice plate,
which at time' t = 0 is set in motion with prescribed
veldeity .V(t) in the positive Xq direction, with

v(0) = 0. The driving forces, ocean and atmosphere effects, o

are modelled by a spec1f1c body force 5

xl dlrectlon with' respect to flxed Newtonlan axes wlth i

origin at the disk centre. Neglectlng wave effects, the S

equlllbrlum equations (112) of Part I in normallsed Varlables
with respect to the polar coqrdlnates (r,6) are |
9T, I _-%

32rr 1

ro rr “686 28 _
—5F f T 55 + - + A“Vcos® = O ,
(84)
L EDX z
166 , 16 ., ~§g - A?Vsin® = 0O ,

T o6 or

where A2 is'aefined by (66). The traction free plate edge

X

requires

r ==L : er = Zre =0, 0<6 < 21 , (85)
and the frozen on fixed disk requires

r=1: 0 = - Vcost , U = VsinG s O 206 < 27, (86)

during the initial pefiod in which displacements and strains
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remain.small, and bonding does not fail. We are considering

the situation when

=1/L << 1 ; 67

that 1s, the plate radius is much greater than the embedded

disk radlus. Thls 1s the ‘most 51mple prototype problem to 'i{

model the effects on a. flxed structure frozen 1nto a large -

ice plate whlch is set in motlon. ?he etraln dlsplacement l

relatiops are
aUq U, aU U 8}

1", "8 _ 8
=5 * T ¢ 2Ere T 5y T %

]
0
t=
|
Ri=
H

3 - (88)

The system is cempleted by adjoining the stress-strain relations,
~and initial conditions in the viscoelastic case, namely, that
the displacement‘ahd stress is zero at time T = O+ ; impulsive

motion is not considered.

| In plane stress, _Zié =, = Ly, = 0, the transforms
of the linear viscoelastic relations (15) — (17) give
E, = Jl.g v rr ~ Bge T I - Lgg) - Ny
(89)
Err + Eee tE,, = (zrr + Y/3kg rr Ezz = err ’

and hence

Ere a ro’ Err er 80 00 " 66 rr ' (20)



IIT

Bo=(1+ ek D/9%k,, ®= (kT - 1/, (91)

9K

and’ Ezz“ls then evaluated by the last relation of (89). ‘;;'f;~

The 11near elastlc relatlomsare recovered by settlng

J = J, = l/2g K constant when n and m - are constants,_

and the relatlons(QO) 1nvert directly to llnear relations
between the straln and stress components. These are equlvaienﬁ
to the relatlons (50) of Part J¥. ©Now time enters the
equilibrium equations (84) only as a parameter in the prescribed
Q(T) , which transforms to sV(s) , and in tﬁe boundary
velocities {86) which transform to sﬁr and sﬁe respectively.
"Hence the system:of trahsformed viscoelastic equations is
identical to.the elastic system transform in the spatial

coordinates when the correspondence
J > J =1/2g, (@@->m, T >n) o (92)

is made, so the transform of the viscoelastic solution is
Simply that of the elastic solution with J replaced by J,
whlch can then be inverted (Conveptlonal Cor*cspondence.
Principle}). An approximate elastic solution can be constructed
exploiting the small parameter § defined by (87).

The stress magnitude on the disk is determined by the

prescribed plate acceleration v, since the total body force
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acting-on the plate is balanced by the reaction of the fixed
disk. Neglecting &2 compared to unity, the total body
force is pm22L%v , and a measure of mean traction on the disk

is therefore

_ pml2L2v

= L 25 -
mean  2u8 2PRL7V .

then:':. o

. o 4 6 ar 2
Orean N 107 - 10°Nm

, as L~ 10> 100 . - (94)

As L or v increases, O oan iNCreases as L?v , and

the local maximum stress (tension and compression) will exceed
Umean‘
A solution of the eguilibrium equations (84) can be

expressed in terms of a biharmonic stress function ¢(r,8):

2 ' 2 2 o 2 '
o o [2% 13, 1-02)(2% , 120, 1 2%) _
Ve = L‘ 2 Trar T z}[ , "I T 2 ° (33)
or . xr*< 26 oY r- 236 :
where o
2 . .
5. =1 2% + 2 278 y29rcos s ,
rr ro r? 3862
_ 3% _ yae - . 98,1 3¢ | |
266 = i A%Vrcos Q , Ly = Br(t @6) .

(see, for example, Chapter 4 of Theory of Elasticity by
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S. Timoshenko.and J.AN..Goodier, McGraw Hill, 1951). ‘The
body force contribution gives er x cosb on r =1,
‘which must be balanced by the stress function contribution
to make the edge freé of traction, which suggests that

$ « cos6 . A separable solution

¢ = ¢(r)cosh

. of (95) gives .

.<;=Ar3-g-‘Br-+-g-+g)r2.nr,_ ' | (9é)
‘er = cose{ZAr f i% + %A— x2vr} , | ‘ .(99)
Xee.=_cose{6Ar + %% + g - A%2Vr} , ' (100)
Xré =‘é%n8{2Ar_; %% + % ' (101)

which do not allow er and Ere to vanish'simultaneously
on r =L . Additional ¢ contributiors proportional to
8cosé or 6 sind could be investigated, but a direct

examination of the net force to be supplied by the disk

-
s
)

reaction is more fruitful.

Consider the net force (FX,FY) due to the stresé field

(39) - (101) on a circle of radius 1r :
v 27 . ' .
- _ ; - - 232
FX = Jo (2rrcose Zr651n8)rd6 T AV ,
2% (102)
FY é j (er51n8 f Zrecose)rde o= o,

o]



_ and only the body force terms contribute -~ the ¢ terms are

self-equilibrating over all circles. Hence, on r = I, R

F, = = wL2A%V = -

X (10§)

1-62

B
requlre an addltlonal stress field whlch annuls the body -

where - F. is the total body force on the platé. We thereforejﬁr

force coptrlbutlon‘:Ffr = - A%VL , Xre =

- ...q,‘

~and hence the net forcé Fy glven by (103), and whlch suppllesi

over r = I;vthe extra reaction of the plate on the dlsk
(in the positi&e Xy directioh) |
'FB*+ A2V = 7L2A%V , = P say ; o (104)

fhat is, a net force P in the negafive Xl direction on
.the plate. Vieﬁed on ﬁhe length scale L, this extra net
_force supplied by the disk'bohding over ? = 1 looks like
a point fdrcé P at the origin, so we can anticipate that
suéhvan:additional point force stress field, which is bounded
-bﬁef the plate, will proVide an approximatlte solution. 'This
solution is4ﬁbw constructéd and is in fact exact, and allows
simple lead order expressions when 62 is neglected~in
comparison with unity. ‘

The stress field for a point force P at the origin

.

along 8 =7w (T and G , page 113) is

¥
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8
5 ' =,Pcosﬂ {4 - (1-v)}
rr 4wr ST ’
(105)
- _ - Pcosd . . _ Psinb .
“gg T dwr (1-v) , Zr6 - At r (1-v) ,

where v is P6isson's ratio and : L L LR

m = vh.;°'Jo'= (L+v)n . -

Terms with the factor (1-v), equivalent to the D terms

: 5

in (99) - (10l1), contribute zero net force over r = constant,
wnile er = Pcosf/nr contributes a net force P in the

positive Xl direction as required. However, the terms

with féctbr " {1-v) are necessary for compatibility with

il

continuous Ue at o0 T that is, they imply a discontinuit:
in Ue

I__ = PcosB/mr . Addition of further D' terms in (99) - (100),

which balances that given by.the purely radial field

giving such a discontinuity, is not acceptabie, SO combining
A, C, and body force terms with the point force solution (105)

gives a stress field of the form

_ Pcos$ L ¢ ovp L x L’ <

po=B9980 arl o Iy oy gevye- Lo af s r3]} o (107)
_ Psin®,,_ ., L r L’

XrS = I (1-v) { T tegp + cr3 ’ (108}
_ Pcosb x B L, . xr i

Lge = o - 4Tt WL -F+3ag-c =7} . (109)



The.gdge condition er = Zre =0 on r = L. is pow

'satiéfied by setting
c=1-a. ‘ (1%0)

leaving one free parameter to satisfy two displacement3 ? ?;

conditions (86) on r =1 , if possible.. By cdnstruction

the net force over r = 1_is BP(1-8%) = F,. in the positive’
4Xln diréction-as'féquired, _ L
By the relations (88) - (90) and (106),

§
i

aU

L S 1, = -
n or "izrr Viggr prl 3% T u) = Zoo VI v
o (111
. U 8U U
1/1 r 6 0, _
H(; 35 +-—§F-— ??) = 2(l+v)Xre -

The rigid body displacement éorresponding-tb zero Stress
which satisfies Uy = O on 8 =0, a reqguired symmetry
condition, is '

np

U, = - %bcose , Uy =bsine (112)

N
»

. ".“3-‘
which is compatible with the boundary condition (86) and

can be added to the integral of (111) for the stress fielgd

(107) - (109), introducing a second free parameter b .



For (107) - (109),

U '
1l ""r._ Pcost _uy2y D —ulF (1— -41% vyl :
8 3E © 4T {(3+2v viz + (1-v)L(i-3v)a-41y + (1-v )C;;} , :(113)
2U, . L : U
‘1,778 Pcos6 L , o _— L, oo
5 YU = ?f(l+v)2; + (1-v){{3-v)a-4IF - (l‘szC;;J _,.;{1{4)
su_ . au, U, : o EmEn
11 _r© 6 _ 6, _Psin® ; 2y¢ 5L r o4
5T 38 Y 3T T ) T Tapp v {2+ 2ag +2c 3
§
i
Integrating (113),
| nPcosb Y L
U, = __Z%§_4(3+2v—v2)znr + %(l—v)[(l—Bv)a—4](E)2 - %(l—vz)c(;)z},(llﬁ)
and now from (114)
U = BESINOL (3upy-vZ)anr - (L+)2 + H(1-0)T(54v)a-a1(E) 2
2 L, '
- 5(1-vH)e(D?*} . (117)

Substituting (116) and (117) confirms that the compatibiiﬁfy
condition (115) is satisfied. ' i
Adding the rigid body displacements (112) to (116) and (117)

and applyving the boundary conditions (86) in the form

- T
r =1 : U_ = -gqcos8 , Ue = gsin6 , g(T) = J (v{Tr)ar*, (11i8)
: o



b - %(l-v)ﬁz[(l43v)a—4] +,g(1—v2)c652 ,

XS
3
il

N o 0 (119)

i_; b - (1+v)? + %(l—v)62[($+v)a-4] - %(1—92)C5~ - ,%?

: ! > ' - - .. DA . “ M
Herce, subtracting to eliminate g and b, and using the
relation'(llof,'

§
t

3=V ‘_ 1+v,2.2 45“ _

a(l +VIIGS ) =1 + (I:;) 5§ + T30 = o) .,
. : (120)
3-v.y _ 2,14V 2 — 2 ’

c(l + —6*') = - & (I:G + 8§°) = 0(6°) ’

which aré indépendent of the displacement mégnitude q. Thus,
the stresses are simply pfoportional to the acceleration Q(T)i
throuéﬁm¢; in the-elaétic daée when v is constant, but for
‘a viscoelastic plate are given by convolutions of Q(T) with
various time dependent material functions. The parameter b

which enters the rigid body displacement (112) is now Given
by -(119), and depends explicitly on V() and g(T) in the
elastic case, and on various convolutions in the viscoelastic

case.
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The stress at the disk interface is

.er = 35959{ 4(1- 5 ) + (1-v)[- 1 + aé? + ¢ ZJ} ’

L= %;?sz’z'cose{l + 0(8%3)}

2}":

14

Iy = PSlne(l ~v){-1. +"a52 £ cs

L L?\rsine{l +o(sHr , © 22y

+
L

-2

. _ Pcosb. ,.» oL 2
Log = — 47 { 46 + (1-v)[- 1 + 3aé cs "1} ,
= ¥VA’L2 VcosB{l + 0(6%)} , (123)

and hence;the lead order tractions er, er are independent‘

of the elastic or viscoelastic properties, but the lead order
hoop stress is proportional to Poisson's ratio v , or a

convolution Qf the associated Vv (T) in the viscoelastic

case. For an incompressible plate v =% , n = %wﬁa or
T o= %fv the stresses (107) - (109) are proportional to V-
‘i,'?

L

and 1dpnt1cal for both elastic and vlscoelastlc shear, and
the displacements are proportional to JOP or the convolution

of J(T) and P(T) respectively. With the elastic dilatation,,

viscoelastic shear, model

. 3k J(s) - 1




so that both‘ T(s) ard V{s) are rational functions for the
model in Part IXI, and the viscoelastic transforms corresponding
to (107) - (109) and (112), ({(116), (117), are rational
functions which invert to sums of exponentials.

'Note.that the maximum normalised interface stress is

I%AZLZV[! , which corresponds to a physical stress %pfL2vy

whichﬂis the estimated mean (93).

Complex varlable methods and conformal mapplng would alldw

solutzons for alternatlve disk shapes, for exanple, an embedded s

elllptlc 1nclu51on, to 1nvest1gate effects of curvature and

-

aspect ratio.. Exploiting the large plate condition '6 << 1
h . _ )

may lead to relatively simple lead order approximationifor the

body force, point force, plus correction stress fields -
construction. Inversion of the viscoelastic transforms will
show how the ratio of acceleration and viscoelastic time

scales influences the interface stresses.
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2. Correlation of far-field ice plate stresses with boundary

displacements of an embedded elastic disk

Consider the configuration shown in Fig. 4 when the axes
0X;X, are principal axes of the uniform far field stress.
Then, as r - «

er > 5(Zy + L,) + 5(E; ~ I,)cos28 ,
i ' : (125)
! .

L > ~5(Z; - I,)sin26 ,

Ton > 5(Z

-1 -
60 + 22) 2(Zl ZZ)COSZG ’

1

where I.,, I, are the principal stresses at infinity. We

ll
suppose that the plate is initially in compression at uniform
stress I

<0, I, <0, and that the far field is not

1 2
disturbed by the embedding of the elastic disk. Let the
elastic disk be initially stress free and have radius 1 + §

(O < § <« 1), Consider two embedding problems:

(A) Hole of unit radius cut in plate and disk simultaneously

.
et

(T = 0) embedded and bonded (frozen on), 2

(B} Hole of unit radius cut in plate, contracts as boundary
~ stress becomes zero during instantaneous elastic response
of plate, then (T = O) disk embedded and bonded

(frozen on).
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The bonding impiies that no tengential slip occurs in T > O,
and that the interface can support tension if required. Thus
the interface conditions on r = 1 are continuity of Ur
"and U, and of I__ and = in T >0 . Procedure (B)

2] rr rd
(1)

allows'a tangential displacement U at the plate boundary“

s

r = l durlnq the Jnstantaneous stress relaxatlon before the =
dlSk 1s embedded and bonded

°7£é£ Zd,v ,Hé denote stress and dlsplacement in the dlsk

and: Zp v Up- the stress and dlsplacement in the plate

aodltlonaL to the uniform fleld ZO, g? in T < O. Seteing

-~

then
‘ zir = ~-'P + Scos20 ,
L
o . .
Z-r = - Ssin28 , . (127) -
T o) — '._ B
,Zee = P.— S cos2b R

and go does not influence the subsequent deformation:s? For

procedure (A), the interface conditions at r =1 for T > O

are )
d _ o r d _ oo P
2rr - er + er i Zre - zre + ErO ! - (128)
d a .
us o+ 6§ = b, Uy = Ug , (129)
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while in procedure (B] the displacement conditions (129) are

replaced by

p _ 41
U Uy

_That is, in procedure (B), the extra plate stress P is .

(l). to make the

zcz)»_

Spllt into an 1nstantaneous relaxatlon

when the o
2(1)

hole boundary stress free, plus a reloadlng

disk is. embedded w1th correspondlng dlsplacements ‘and

ol

The rad1a1 displacement pf a boundary lent is the sum

of Uél) and U;Z)' namely Ug , but tangential displacement

2 1
Ué ) _ Ug - Ué ) . We also require,

from (125) and (127),

zgr , P

‘Y6’ Xge'*o as xr > @ . : (131)

Z
The solution for both problems (A) and (B) are deterxrmined, and
are inverted to express P and S in terms cf the displacements
of the disk boundary.

First treat the plate as elastic with the constants n,

v of the previous section, and let the disk have corresponding

R

constants

Ngr Vgq- We seek equilibrium solutions of (84) in
the absence of the body force term (V = 0) for the plate and
— a p Tod P
the disk such that er ' Err , and Xra ' Zre incorporate

the cos28 and sin2d terms necessary to satisfy the traction

conditions (128) on 1r = 1 , and generate Ud . uP

an
r d



solutions analogous to those given by T & G, pp. 58 - 80,
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Ug‘, Ug"- with the same ® dependence on r =1 to satisfy -

(129). In the disk, Xd is bounded at r = 0 , ‘and in

the plate IP > 0 as r » » . Suitable stress fields can .

be constructed by symmetric and separable stress function

namelf":

zrr??'f_?gsge_Ad_f Cd'fl?;
id- = sinéé(A Z¥ B.r?) B
rd d d ’
14 = cos26(a, + 2n r2) +¢C, ; o
6o T A T Thd Fa ! R
: A B C
P = - cos20(R + 2 -B) + 2,
r; rk r2 r2
. ) p ' ‘ Ap . EE . .
to Iy = - sin28(—- + — ) . ' (133)
: X N Y
A c
— de.=v00328 D = < :
. ru r2

which satisfy conditions at r = O and as ¥ » « . Traction
’ k2

continuity (128) gives the three relations
Cd="P+Cpl ,

Ad = - § + Ap + 2BD ' _ - {134)

Ay +Bg=-S-A -B, .




Integrating the stress-displacement relations (lll)ASubject

to the'symmetry conditions

Ue =0 on 8 =0, /2, W, (135)
o? = - n ‘-cé"sze'{(li\)" )A e+ 2y
r d AR d.ld 3 d d
Ud = n siﬂze{(i+v 5A f + l(3+\) ).£.3 r’i :3;
6" d a’°'a 3 a’-d ’
‘ : .
§
and
UE ==?1c0526{-%(l+v)Apr‘3 + 2Bpr_1} - n(l-w)Cpr"l R
{137)
P _ . ¢ X -3 -1 '
U = nsin26i{ s(1l+v)A r - (1-v)B . r .
5in26{ 3(1+v) A (1-)Bx "}

{

The stress field Z(l) required td make r = 1 stress

free is given by the field (133) with coefficients Al'Bl’le
in place of Ap,B +C_, which satisfy (134) with

Pp P

Ad = Bd = C, =0 . Thus

¢, =P, By =25, Al=—§S. ' (138)

is

gl = = n s sin'28(3-\)o) ' o (139)
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where Tno, vo' are the instantaneous elastic parameters if
the plate is viscoelastic. When the far field stress is an

(1)

isotropic pressure, S = O, Uy~ =0.

- The displacement conditions (129) of problem (A) give

s
!

nd(l-vaycd é_' 8 -.n(l+v)C ,

20

3 a d} = n{ (l+v)A + 28 }

R, = - n {(1+v )A +

| @';'nd{<1+pd)Ad + -]3:(3+vd'>nd} - n{§(1+u)Ap - (1—\,)‘3;_1 ,

where we have written

a, - | d )
US(1,8) = R+ Rgcos28 , UG(1,6) = (:) sin26 . (141)

Thus, if the disk boundary displacement is measured, compatible

"with the‘distribuﬁion (141), thgn Rr' RG' (:) . are

. ( . . - i
prescribed quantities, functions of time when the plate is
viscoelastic. The six relations (134) and (140) determine

d'Bd’ d'Ap Bp Cp ,:and hence Rr'RB' (:) + given P and g,

or alternatively, given compatible R RG' (:) ; they determine

A Cc

the far field stress P and S. The condition (130) of

problem (B), with expression (139), replaces (1409 4 byﬁf

(:) = n {(1+vg)ny + %(3+vd)Bd} = n{%(;+v)Ap - (1-v)B}

*;“q5(3"vo) . (142)
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By (134), and (140) 4,

cp =C4q +P _,‘ cd{nd(l-vd) + n{l+v)} = -§ - n(l+v)p, (143)

determine C_ and C., or
. S a

. _ B #8 . R

determines P in terms of Rr . Equations (134)2 3 and
T ~in of LG 4) 5
(140)2'3'are 4 relations for AgBgsB,sB,s independent of cd'

and Cp, so S can be expressed in terms of (:) + with

analogous results for problem (B) when (142) replaces (140)3.

Both sets are convehiently expressed in matrix form, respectively

— - i SR [~ -
1 0 -1 -2 Ad -1 -1
{
1l 1 1l 1l Bd 1 -1
2V - : . .
d 1. 273 = § or 'S (145)
1 3(l+vd) 3] +V Ap 0 ¢ -
3+v . .
a _1. J(1-v) -
1 g-ﬁ—_qd-) 3j 1-v BP (o] n0(3 \)o)
- Jr L | i
where
5 n{l+v) . | (146)

I‘ld(l-l-\;d)



T

The matrix determinant is

. 125 (3+vv ,)
s 33(3-v) 1 - d _ .
A=+ IS v sy T Y3 - vdl > 0.
so by Kfamer's rule
S 1 -1
.. %; l,; 1 -.l i?lﬁ“ﬁ@.
ABy = SR .y
1 ' 0 "ij ' 2j/(l+V)
o f R
1 n (3-v)} =33 3 (1-v)/(1+v)

: ., 43 .
no(3—vo)(l -3t 1 ) (148)

with ng: set zero for problem (A).

Hence, for problem (4), .
“.;f»_: .. de = 0 , (149}

‘and the relations(145) are simplified. Continuing with (a),

the first two relations of (145) show that -

A=-——”;1B A, =- 5+ =B_ , ' (150)

p p’

while the last two relations confirm (150)1 and give

3(3-v) 4
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and hence

1 + v + 3(3-v)
2(I+) By v (152)

S =

~ Ad? Ap are determined by S, all zero if

S = 0. Alternatively, for given (g) ,» (140); with (151),

so that B

(i52), gives .o .

‘g ;7_‘<:).1 +:9'+ j(3—v5 5.j">.ll

n(l+v) (3-v)

H
H]

For problem (B), B is given by (147) and (148), then

B. . © (154)

andg

1 ' S{- jn(1l+v) (3-v) + %non(3~vo)(lfy)2}
@ = gng(3-Vvg)By - 2 (155)
: F{1 + v + j(3—v)}

e

determines S if (E) is given.
Viscoelastic plate solutions are given by the Laplace

transforms of the above relations with n replaced by ‘X(s),



v repl;ced by> 3(5) etc. Since P and S are iﬁdependent
of T, we find, for example, that in problem (A) by (144):
Rr(s) + & Rr(s)

=, — +
J(s)

1
iy

nd(l—vd) °

Thus, the measﬁ:ea“eRr(T)f_huSt be'éqﬁbaﬁiﬁle

'all time. In particular, the instaniaﬁébus'reSpépsé_is

by
R _(0+) + 6 ARr(Q+) R -

+ - . (157
3, pgIvy) - - )

- P =

Since the initial elastic response of the non—-linear viscoelastic

model of ice also has high modulus and gives an infinitesimal

strain, (157)‘will apply with JO simply the instantaneous elastic

modulus in shear.  Similar conclusions apply to the elastic

relations (153) and (155) applied at T = O+.



Concluding Remarks

The solution of ice force problems on time scales in
which the ice responds as a highly non-linear viscoelastic
material, solid or fluid models, will requlre numerical methods.

ThlS report has formulated small straln approx1matlons for sollds'

Tl

of dlfferentlal tyoe, and the complete slow flow equatlons 1n

‘nlane stress and plane straln, when tlme scales are muchi

Imp11c1t finite dlfference schemes for time- stepplng reduce the
problems- to a seguence of non-homogeneous elastic problems, which
ccuid—be apprcached by finite d&fference or finite element
methods. Possibly the combined space and time variable domain
can be treated by finite element methods. As integral type
models are constructed to describe the viscoelastic response
of ice, these should be investigated in the context of
boundary-value prdblem formu;ation, since the Volterra inregrals
may be mdre tractable to fast and accurate numerical solution.
An approximate integral type model matching the main features
of unieaxial compression data should be available soon,'and will
require extrapolation to a frame indifferent tensor relation
for multi—axiel loading, using plausible bi-axial response in
the absence of detailed data. : 4
Further developmenﬁ of linear viscoieasfic models wﬂich
match the main featuresof the non-linear response at constant
stress and constant strain-rate at chosen levels would be
useful. Such a uni-axial correlation, together with‘assumptions

"of isotropy and incompressibility, fully determines the response



to muiti-axial loading. vA key feature is the‘high initial
elastio modulus compared to stress-strain ratios during creep,
but analysis has indicated the relative magnitudes of various
B material parameters needed to meet this requirement in

conjunction with other features. Given such a linear model,

a varlety of contact problems could be solved to 1nvestlgate,_*

. example; the one—dlmen51onal 1mpact problem desorlbed in Part
Ix could be solved in detail, and also the embedded dlsk
problem described in Part ITI. ‘ Such solutlons will also prov1de\
a valuable test scheme for the stability and accuracy of the
time-iteration numerlcal procedures in the non-linear numerical
algoritbms. ln-addition, solutions of simple problems for a
highly nohflihear elastic model, reflecting the dramatic change
of modulus, would .test the non-linear aspects of the spatial
problem;; | | |

It may;also be'useful to examine loadibg~unloading-reloading
responses of both llbear"and non-linear viscoelastic models
at different strain;rates, in particular at small Strain-rates,
to demonstrate that in the stress-strain domain (uni—axial),v

ellmlnatlng time, they exhibit yield and hystereris features
“‘s.\

assoc1ated with rate—lndependent plasticity theory. 1In
particular;'the sensitivity to small (non-zero) strain-rate

can be examined. Here, small strain~rate implies loading

times long compared to the material characteristic tiﬁe.

This aspect arose.from discussions with Dr. R. Norgren of Shell,

and the results would prov1de some basis for the constructlon of

a VlSCOplaSth model lncorporatlng a yleld concept 1f this

' proves inecessary. -



